Combined NMR and computational study for azide binding to human manganese superoxide dismutase.
نویسندگان
چکیده
Human manganese superoxide dismutase (MnSOD) labeled with 3-fluorotyrosine (Tyf) was complexed with the (15)N-labeled inhibitor azide ([(15)N(3)(-)]). The sample was characterized by solid-state NMR (SSNMR) spectroscopy ((19)F-MAS and (15)N-CPMAS). Employing (19)F-(15)N-REDOR spectroscopy, we determined the distances between the fluorine label in Tyrosine-34 and the three (15)N-nuclei of the azide and the relative orientation of the azide in the binding pocket of the MnSOD. A distance of R(1)=4.85A between the (19)F-label of Tyf34 and the nearest (15)N of the azide and an azide-fluorotyrosine Tyf34 angle of 90 degrees were determined. These geometry data are employed as input for molecular modeling of the location of the inhibitor in the active site of the enzyme. In the computations, several possible binding geometries of the azide near the Mn-complex were assumed. Only when the azide replaces the water ligand at the Mn-complex we obtained a geometry of the azide-Mn-complex, which is consistent with the present NMR data. This indicates that the water molecule ligating to the Mn-complex is removed and the azide is placed at this position. As a consequence the azide forms an H bond with Gln143 instead with Tyf34, in contrast to non-(19)F-labeled MnSOD, where the azide is hydrogen bonded to the hydroxy group of Tyr34.
منابع مشابه
Comparative modelling of 3D-structure of Geobacter sp. M21 (a metal reducing bacteria) Mn-Fe superoxide dismutase and its binding properties with bisphenol-A, aminotriazole and ethylene-diurea
Superoxide dismutase play important roles in iron-respiratory bacteria such as Geobacteraceae as an antioxidant defense, and probably an effective enzyme of electron transfer network. Regarding the application of iron-respiratory bacteria in environmental biotechnology particularly biodegradation and bioremediation, understanding the mechanism of inhibition/induction of superoxide dismutase by ...
متن کاملPhysical and chemical studies on bacterial superoxide dismutases. Purification and some anion binding properties of the iron-containing protein of Escherichia coli B.
Highly purified iron superoxide dismutase was obtained from Escherichia coli B using a modification of the procedure of Yost and Jridovich (Yost, F. J., Jr., and Fridovich, I. (1973) J. Biol. Chem. 248, 4905-4908). The protein contained 1.8 +/- 0.2 atoms of iron per 38,700 g of protein. We have found that cyanide does not bind to the Fe3+ ion of iron dismutase but fluoride and azide have modera...
متن کاملTowards Al3+-Induced Manganese-Containing Superoxide Dismutase Inactivation and Conformational Changes: An Integrating Study with Docking Simulations
Superoxide dismutase (SOD, EC 1.15.1.1) plays an important antioxidant defense role in skins exposed to oxygen. We studied the inhibitory effects of Al(3+) on the activity and conformation of manganese-containing SOD (Mn-SOD). Mn-SOD was significantly inactivated by Al(3+) in a dose-dependent manner. The kinetic studies showed that Al(3+) inactivated Mn-SOD follows the first-order reaction. Al(...
متن کاملCloning, Expression, and Characterization of Thermotolerant Manganese Superoxide Dismutase from Bacillus sp. MHS47
A superoxide dismutase gene from thermotolerant Bacillus sp. MHS47 (MnSOD47) was cloned, sequenced, and expressed. The gene has an open reading frame of 612 bp, corresponding to 203 deduced amino acids, with high homology to the amino acid sequences of B. thuringiensis (accession no. EEN01322), B. anthracis (accession no. NP_846724), B. cereus (accession no. ZP_04187911), B. weihenstephanensis ...
متن کاملPurification and properties of superoxide dismutase from a red alga, Porphyridium cruentum.
The major superoxide dismutase of the unicellular red alga, Porphyridium cruentum, has been purified to homogeneity. This enzyme has a molecular weight of 40,000 and is composed of two subunits of equal size, which are joined by noncovalent interactions. Manganese constituted 0.13% of this superoxide dismutase. T,is is equivalent to 1 manganese atom/molecule of enzyme. Cyanide at 5 mM and H2O2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Solid state nuclear magnetic resonance
دوره 34 1-2 شماره
صفحات -
تاریخ انتشار 2008